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1. INTRODUCTION AND PRELIMINARIES

In a conference held in Oberwolfach in 1968, Rivlin [7] posed the following
problem: ’

Characterize those n-tuples {p, , p; »-..., Pn_y; Of algebraic polynomials
such that the degree of p;is j,j = 0, 1,..., n — 1, for which there exists a
function f e C([a, b]), the space of all continuous real valued functions
on [a, b], such that the polynomial of best approximation to f, in the
sense of Chebyshev, of degree j, is p;, forj =0,1,....,n — L.

Earlier, in 1957, Paszkowski [6] characterized two polynomials of successive
degrees, with the above property. Deutsch, Morris, and Singer [3] have
considered the above problem in a general normed linear space and have
characterized a sequence of elements of linear subspaces for which there exists
an element having the sequence of elements as best approximations in the
corresponding subspaces. In particular, they have given a solution to Rivlin’s
problem for constant and linear functions. Sprecher [8] has considered two
polynomials of arbitrary degrees and in [9] he has given a solution to the
above problem for the case n = 3. Subrahmanya [10] has generalized the
case n = 2 to a general Chebyshev system and in {11] has given a solution
to the above problem for a general n. Hegering [5] has considered the above
problem in normed linear spaces that include C(7T'). In all the above papers,
except that of Deutsch et al., only a finite number of elements are con-
sidered.

In this paper we consider the above problem in C(T), T compact and
characterize an infinite set of elements for which there exists an element
fe C(T) with this set as best approximations from arbitrary subsets which
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we assume suns only in the necessity part. This is given in Theorem 2. Our
main result is given in Theorem 1 of this paper, from which we get a number
of other corollaries, including generalizations of a particular case of a theorem
of Brosowski [2], and a theorem of Subrahmanya [11].

Let T be a compact Hausdorff space and let C(7") denote the set of all
continuous real valued functions defined on T, normed by

11 =sup|f(1)].
teT
Let @ # VCC(T) and fe C(T). An element v, € V is said to be a best
approximation to fin V, if
[ f— vl = inf | f — vl = Ev(/).
We denote by Py, f), the set of all best approximation to fin V, i.e.,
Py(f) ={veVIIf—vll = E(f)-
V is said to be a sun if whenever v, € P.( f) for some fe C(T) implies

vy € Py(vg - A(f — vy)

for every A = 1.

A signature € on T is a continuous mapping of a closed subset of T into
{—1,1}. The set of all signatures on 7T is denoted by SIG[T]}. A signature ¢
is said to be extremal for the element v, (with respect to V C C(7)) if for
every v € V we have

(D, <D0 — 1) <O

If f& C(T), we denote by M, the following set:
M, ={teT|fO] =]/}

For f = 0, there is a natural signature e, defined by
eft) - f(t) = [ f(O =[]

Then we have the following well-known result [1]:

LemMMA 1. Let ¥V C C(T). Then V is a sun if and only if whenever vy € P,(f),
fe C(TWV, implies €1 v, IS extremal for v, .

LemMA 2. (a) The mapping @: C(T) x T — R defined by D(f, 1) = f(1)
is continuous.
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(b) For compact A C C(T) the functions
y(t) = sup x(t) and z(t) := ng; x(1)

are continuous on T,

Proof. (a) Let fye C(T), t, T and ¢ > 0 be given. Then for every
(f, t) in the open set

{FeCN|f—1foll < €2} x{teT||ft) —folt)] < €/2}
we have

(@) —fot)] < L) — SOl + 1/o(t) — folto)] < €

which shows that @ is continuous.

(b) Let (z,) be a net converging to 7. For each v there exists an x, in
A such that x,(t,) = y(¢,) and an % in 4 such x(¢f) = (i). Since 4 is compact
we can assume that x, converges to x in 4. By part (a) and by the continuity
of X we can conclude from

X(t) < yt) = P(x, , 1)
the inequality

1) = x(1) < Wb = (i)

and hence the continuity of y. By the same method one can prove the con-
tinuity of z.

Let K be a compact Hausdorff space and let v: K — C(T) and e: K — R+
be continuous mappings. Then we define the continuous mapping

v’ K— C(T), de{-—1,1}

by ¥%x) := 0% := v, + e, := v(x) + Selx).
We then set

vy =supov; and v, =infulh
ek keK

2. THE MAIN RESULT

THEOREM 1. Let K be a compact Hausdorff space and let v: K— C(T)
and e: K — R* be continuous mappings and let V: K — POT (C(T)) be such
that, for all k in K, we have v, € V, . Then in order that there exists a function
fe C(T) such that v.€ Py (f) and e, = || f —v.|| it is sufficient and if for
every k € K, V, is a sun then it is also necessary that there exists a mapping
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e: K — SIG(T) such that ¢, is extremal for v (w.rt. V,) with the following
properties:

(i) For every te T we have v_i(t) << v 4(1).
(ii) For every x € K we have

€ (1)
t € DOM(e,) = ve (1) — v

() =0.
(iti)  For every pair k, p € K we have
t € DOM(¢,) N DOM(e,) = v (1) — e, 0(?) = 0.

(iv) The set K°:= {xe K| 8) = @} is closed and the mapping
M?: K® — 2T defined by x> e Y3) is upper semicontinuous where

Sef{—1, +1k.

Proof. Necessity of the conditions. For f'e C(T) with the properties of
the theorem define a mapping e: K — SIG(T) by <, ,_ for each « € K. Since
each V, is a sun the signature ¢, is extremal for v, . Since by assumption
v. € Py (f)and e, = || f— v, /| we conclude from

—e. < f() —odt) < e,
for each ¢t € T and each « € K that
v(t) < f(1) =< oyl1)
which implies condition (i). Every € DOM (¢,) satisfies
F) —00) = 1l f — vl = e,
Using the last inequality we conclude

vdt) 4 €dt) e = f(1) = Ve o(1)

€.(D

Uy

which proves (ii).
Every t € DOM (¢,) N DOM(e,) satisfies the equations

f(t) = vt) + elt) e = Ve, 0(2),
f(t) = v,t) + et) e, = v, (1)

which imply condition (iii).
For 8 e {—1, 1} define the set

A= {r e C(T) (0) + = and  xeK)
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which is contained in the compact set IM(v), the image of ». Choose a net
(v, ) in A° converging to v, in IM(v).

Ifv, =f, thenv, e A*' N A If v, 5 f then choose a subnet (v,) of (v,)
and a net (t,) in T converging to #, in T and f(t,) — v,,(t) = 6l x — v, ||
By Lemma 2, we have

S f — v, [l = F(1) — v, (8) > f(to) — v, (t0)
By the continuity of the norm we conclude that
B Hf— vxo H = f(to) - UKO(tO)'

Hence, v, € 4°, which shows that 42 is closed. By the continuity of v the set
K¢ is closed. Since the mapping « — f — v,., « € K, is continuous it suffices to
prove that the mapping g — €;%(8), g C(T), is upper semicontinuous. If
not there exist nets (g;) in C(T) and ¢,) in T converging to g, € C(T) and
resp. to ¢, in T and an open set U, containing e‘01(8) such that ¢, € 5“1(8) and
U, N {t,} = @. The last condition implies 7, ¢ 6-1(8) By Lemma 2 we have
2:(t) — go(t,). Since 8 g, || = g.(r,) we have by the continuity of the norm
8]l goll = golty) and hence 1, € e;ol(S), which is a contradiction. This proves
condition (iv) and completes the proof of the necessity.

Sufficiency of the conditions. Since the mappings v and e are continuous
the mapping ©°: K — C(T') is also continuous, 6 € {—1, 1}. By Lemma 2,
v_, and v, are continuous functions on 7.

By condition (iv) the set K%, 6 €{—1, 1}, is closed and by compactness of
K also compact. Since the mapping M? is upper semicontinuous by a theorem
of Hahn [4] the set

No:= ) M¥x), 8e{—1,+1}

xekK
is compact. Now define a function
g NIUN1 R

by g(#) := ve(t) for t € N°. Then g is well-defined by condition (iii) and it is
continuous by the continuity of vy, v_; . By Tietze’s theorem there exists a
function fe C(T) such that f(¢) = g(¢) for t e N1l U N1,

We can assume that v_,(z) << f(t) << v,(¢) for all ¢ € T. For, if not consider
the function

v5(2) for tef{teT| o(ws(t) — (1) <0}

f@) = f(r) for tef{reT|v_(t) <f() <)}

640/15/2-5
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which is well-defined by condition (iii) and continuous (cf. [2, p. 38]). Further
it follows that f(z) = g(t) for te NY*U N, v_,(t) < F(t) < v,(t) for all
t € T. Consequently, we have

—e, < f(1) —uvdr) < e
for all t € T, which implies || f — v|| < e, . Also if 1 e DOM(e,) then we have,
from condition (ii),
boo® — () =0 and  re N,
Consequently, f(¢) = v, (t) = v<(¢). That is
f@t) —olt) = eld) e,

which shows that DOM(e,) C DOM(e,_, ) and ,(f) = ¢,_, (¢) for each ¢ in
DOM (e,). Since ¢, is extremal we can conclude that v, € Py ( f). This
completes the proof of the sufficiency of the conditions.

3. SoME COROLLARIES

THEOREM 2. Let K be a compact Hausdorff-space and let v: K — C(T) be
a continuous mapping. Let V: K —~POT(C(T)) be such that v .V, for each
« € K. Then in order that there exists an f € C(T) with v, € Py (f) it is sufficient
and if for each « € K, V, is a sun then it is also necessary that there exist a
continuous mapping e: K-> R+ and a mapping <: K — SIG(T) such that e,
is extremal for v, with the following properties

(i) e, +e. =llv, — . for each pair k, pe K

(i) minepome,) €)lt) —vd1)) = e, — e, for each pair k, pekK
(iii) as in Theorem 1
(iv) as in Theorem 1.

Proof. Necessity of the conditions. Define a continuous mapping
e: K >RV bye, = ||f—uv.l, «€ K. By Theorem 1 there exists a mapping
e: K— SIG(T) with properties (i)-(iv) of Theorem 1. Condition (i) of the
Theorem 2 is an immediate consequence of the triangle inequality. By (ii)
of Theorem 1 we have for each t € DOM(¢,)

€0
vex(t)(z) — U (t) == Oa
from which we conclude

e t) + eft) e) < e D) v (1) + ed) €,)
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for each p e K, or

eDw(1) — o) = ;

reDOMIe »
which proves (ii).
Sufficiency of the conditions. Condition (i) of Theorem 2 implies
vlt) —vlt) < e +e,
or v(t) —e, <ulh) +e,

for every t € T and every pair «, p € K, from which we conclude v_,(¢) < v,(f)
for each te T.
Condition (ii) implies
e (1) + elt) e,) = ex(t)(vx(t) +edt)e)
= (020

for each r € DOM(¢,) and each p € K.

Consequently
€, (1)

K(t) KK (t) - GK(I) UEK(t)(t)
which implies condition (ii) of Theorem 1. Now by Theorem 1 we can con-

clude the existence of the function f.

CorOLLARY 1. Let V,CV,C--CV, be a sequence of Haar-subspaces
of Cla, b} with d,:=dimV,, v =1,2,....,n, and let vy, v,,..., v, elements
in Cla, b] such thatv, e V,,v =1,2,...n

If there exists points

a < tu.() < tv,l < << tv,dv < b;

real numbers
e > e > >e, =0,

and 7]197]2 EXRRE nne{—la +1}

such that for all v, p with v # p we have

Oglnd 7]1!( l)x (Uu(tv K) v(tu,x) > e, — €y

then there exists an f € Cla, b] such that

v, € PV,,(f)5
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Proof. There exist real number 6, , such that the points

{9.5(‘ :: tV,K + 89,?(
are different and are contained in [a, b], and that we still have

min 7]1}(—— l)K (Uu(iv,:c) - vv(iv,x)) >e, — €.

0<k<<d,

Now define with 4:= max, , ||v, — v.| real numbers ¢, := e, + 4, v = 1,
2,...,n. Then we have e, +¢&, > ||lv, — v, for all u, v. Since each V, is a
Haar-subspace of dimension d, the mapping

€, {tv,O H tv.l 3eey tv.d,,} - {_1, +1}
defined by
e, 1= p{—1)

is an extremal signature for V, (compare Brosowski [2]).

Now €, €,...,€,, €,869,....8,, and v;, v,,..., v, satisfy conditions (i)
and (ii) of Theorem 2. Condition (iii) is fullfilled since the points 7, are
different and condition (iv) is fulfilled since K is finite. Consequently, by
Theorem 2 there exists an f in Cla, b] with v, € PVv(f), v=1,2,.. n

COROLLARY 2. Let Vi C V,C---CV, be a sequence of Haar-subspaces
of Cla, bl with d,:=dimV,,v =1, 2,..., n and let v, ,v,,..., v, elements
in Cla, b} such thatv,e V,,v =1, 2,..., n.

If there exist an f in Cla, b] such that v, € P,,y(f), v =1,2,.., n, then there
exist points

a < tV,O A tv,l < <] ty,dv < b,

v="12..,nand v, ng,....,nn € {—1, +1} such that foralln = p >v =1
either
nv(_l)x(uu(tv,x) - Uv(’v.x)) > 0

«k=01,.,d,,o0rv, =v,.
Proof. 'We have
Ev(f) = Ev(f) = = = Ev(f)

IfE, (f) = Eyu(f) then by the Haar-condition v, = v, . If E; (f) > EVM(f)
then we consider the extremal signature ¢, ,, . For all f€ DOM(e;_, ) we
can conclude from condition (ii) of Theorem 1 that

er—, (D) 0(1) + Ev(f) < e,y (O v.(2) + Ev,(f)
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and hence
€50, (D)W(t) — v(t)) = Ev(f) — Ev,(f) > 0.
By the alternation theorem there exists a number 7, € {—1, 41} and points
a < tv,O < tv,l < << tv.d‘, < b9
such that
ef—?l,,(tv,x) = 7}:1(“1))‘9

k =0, 1,..., d,, where the points ¢, , can be chosen independently of .

COROLLARY 3. Let V{ CV, be Haar-subspaces of Cla, bl, v,€V,, and
v €V,.

In order that there exists an element f in Cla, b] such that v € Py (f),
i =1, 2, it is necessary and sufficient that v, — v, has d, := dim V, zeros in
the open interval (a, b) or is identically zero.

Proof. 1f there exists an f with this properties then by Corollary 2 there
exist points

a < tl.() << t1_1 < o < tl,dl < b
and 7, € {—1, 41} such that either
771(_—1)‘((”2(&,»3 - Ul(tv.x)) > O’

x« =0,1,2,..,d;, or v, = vy . From this we conclude that v, — v, has either
d, zeros in (a, b) or is identically zero.

If there exist vy, v, satisfying the condition of the corollary, then we can
omit the case v; = v, because it is trivial. If v; = v, then let

a7 <1y < L1y, << b
be the zeros of v; — vy, put 7, := g, and 7, 1, := b. Then choose an
ne{—1, +1}
and for v = 0, 1,..., d, points ¢, , in the open interval (r,, 7,,,) such that
(= D@aty,) — 04(t1,)) = « >0,

« =0, 1,..., d, . Since v, — v, has at least one zero in (a, b) we can choose
points

A<ty <flyy <0 <ty <b
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such that | vy(ts,,) — v1(ts,)| << af2for« = 0, 1,..., d, . With the real numbers
e 1= oy, e = of2, and 9, = 1 we have

D= (0slt1,) — v4ltr,)) > e — €y,
k=0,1,.., d, and
(=D (01(t5,.0) — s(t2,.)) > €2 — €,

k=0,1,.,d,.
By Corollary 1 there exists an f'such that v, € P, (f), i = 1, 2.

CoRrROLLARY 4. Let K be a compact set and v: K— C(T) be a constant
mapping, say v, = v for all k€ K, and let V: K—POT(C(T)) be such that
veV, for all xe€ K. Then in order that there exists an fe C(T)\V, with
ve Py (f) for all xeK, it is sufficient and if V. is a sun for each
x € K, it is also necessary that there exists a signature € which is extremal for v
with respect to V, for each k € K.

COROLLARY 5. Let K, vand V be as in theorem 1. Then in order that there
exists anfe C(TYywithv, € Py (f) and || f — v, || is constant, it is sufficient and
if V. is a sun for every x € K it is also necessary that the conditions of the
theorem are satisfied with

v 1= min o, and Ly 1= MAX B

COROLLARY 6. Let Vi, s Viegseos Ve, be subsets of C(T), v, € Ve, o i =1,
2,....,nand €y, = 0,i=1,2,..., n, be given. In order that there exists an f € C(T)
such that v, € Py, (f) with | f — v, || = e, it is sufficient and if each V,_,
i=1,2,...,nis a sun, it is also necessary that the following conditions are
satisfied:

) vty =v_(t) foreachteT.
(ii) For each i, there exists an extremal signature €_for v, such that if
t€ DOM(e,), then

€.
ey, (1) — 05 (£) = 0.
(i) IfteDOM(e,) N DOM(e,,), then
vs,(l_(t)(t) - UeKj(t)(t) = 0.

Remark. Corollary 6 generalizes a result of Subrahmanya [11].
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COROLLARY 7. Let K be a compact set, v: K— C(T) be a continuous
mapping and V C C(T) be such that v. € V for all k € K. Then in order that
there exists an f€ C(T) such that v, € Py(f) for all x € K, it is sufficient and
if V is a sun it is also necessary that there exists an extremal signature € for
some v, (and hence for all x € K) satisfying the following condition:

v{t) — v, (t) = 0 for all t e DOM(e) and all x € K.

Proof. 1f there exists an f € C(T) with v, € Py (f) for al « € K, then setting
IIf — v.l| = e, we have the conditions the Theorem 1 with

V: K —POT(C(T))

and e: K — R+ now constant mappings. Now by ‘““the intersection theorem”
(see [2, Satz 3.7]) we have

e={) €0,

k€K

is extremal for v, for all « € K. If € DOM(e) then from condition (ii) of
Theorem 1 it follows that

«(t)
vep(t) — 051) = 0
and

ven(t) — (1) = 0

and hence it follows that »,(t) — v, (t) = 0 for all 7€ DOM(¢) and for all

x € K, which proves that the condition is necessary. On the other hand let €

be extremal for v, and v(t) — v, (t) = O for all 7€ DOM(e) and all k € K.
Choose an e such that

2e = || max v, — min e, |

Then conditions (i) and (ii) of Theorem 1 are immediately satisfied by noting
that € is extremal for v, for all « € K, follows from the given condition. Also
conditions (iii) and (iv) do not contribute and hence the proof is completed.

Remark. The necessity part of Corollary 7 is a generalization of a result
(see [2, Satz 3.7]) of Brosowski.

CoOROLLARY 8. Let K ={1,2}, v and V be as in Theorem 1 be such that
Viand Vyare sunsand Vy C V. Then if there exists an f € C(T) withv; € Py (f)
then there exists an extremal signature e for v, satisfying the following con-
dition:

For all t e DOM(e) we have either e(t)(v,(t) — v,(t)) > 0 or

va(t) — 0y(2) = 0.
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Proof. If Ey( )= Ey( f) then from Corollary 7, there exists an extremal
signature e for v; with respect to ¥, and hence with respect to V] such that
for all € DOM(e) we have

0,(8) — vy(t) = 0.

On the other hand if EVI( > Eya( f), then since ¥V, is a sun €0, is extremal
for v, (w.r.t. V;) and from condition (ii) of the theorem, if f € DOM(e;_, ) and
€7, (f) > 0, we have

vi(t) + Ev,(f) <vot) + Ev,(f)

and hence e;_, (1)(vy(t) — 02(1)) = Ey (f) — Ev(f) > 0, and if &, (1) <O,
then, again from condition (ii) of Theorem 1, we have

v,(t) — Ey(f) = vy(t) — Ey,(f)

and hence e,_,,l(t)(vz(t) —u(t)) = Ey (f) — Eyp(f) > 0. Which shows that
foralltre DOM(ef_vl), we have

€70 (D)((t) — (1)) > 0

and hence completes the proof.

Remark. Corollary 8 generalizes the necessity part of a result of
Paszkowski [6] for the case of two polynomials of consecutive degrees (see
also [8, 3, 10]). In all the abovecited papers, the condition was also sufficient.
It seems that the condition of Corollary 8 is not sufficient, but we are unable
to construct a counterexample.

ACKNOWLEDGMENTS

The second author wishes to record his thankfulness to Prof. Dr. Brosowski for his
invitation to spend a few months at this Institute and to Prof. Dr. Alladi Ramakrishnan,
Director, Matscience, The Institute of Mathematical Sciences, Madras, India for readily
extending his leave from Matscience.

REFERENCES

1. B. Brosowski, Einige Bemerkungen zum verallgemeinerten Kolmogoroffschen Kri-
terium, in “Funktionalanalytische Methoden der numerischen Mathematik,” (L.
Collatz und H. Unger, Eds.), pp. 25-34. Birkhduser-Verlag, Stuttgart, 1969.

2. B. Brosowskl, Nicht-lineare Tschebyscheff Approximation Hochschulskripten, Bd.
808-808a, Bibliographisches Institut, Mannheim, 1968.



[V

10.

11.

PRESCRIBED BEST APPROXIMATIONS 155

. F. DEuTsCH, P. D. MORRIS, AND 1. SINGER, On a problem of T. J. Rivlin in approxima-
tion theory, J. Approximation Theory 2 (1969), 342-352.

. H. Hann, “Reelle Funktionen,” Chelsea, New York, 1948.

. H. G. HrGering, “Uber das Rivlin-Problem der simultanen inversen Tschebyscheff-
Approximation” Thesis, Universitat Miinchen, 1971.

. S. Paszkowskl, On approximation with nodes, Rozprawy Math. ( Warszawa) 14 (1957).

. T. J. RivLIN, New and unsolved problems, No. 14: Best algebraic approximation, in
“Abstrakte Riume und Approximation,” Vol. 10, p. 421, Birkhduser Verlag, Basel-
Stuttgart, 1969.

. D. A. SPRECHER, Simultaneous best approximations with two polynomials, J. Approxi-
mation Theory 2 (1969), 384-388.

. D. A. SPRECHER, On simultaneous Chebyshev Approximations, J. Approximation

Theory 4 (1971), 137-146.

M. R. SUBRAHMANYA, A note on a problem of Rivlin, J. Approximation Theory 6

(1972), 359-361.

M. R. SUBRAHMANYA, A complete Solution to a problem of Rivlin, Rev. Roumaine

Math. Pure Appl., to appear.

Printed in Belgium



