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1. INTRODUCTION AND PRELIMINARIES

In a conference held in Oberwolfach in 1968, Rivlin [7] posed the following
problem:

Characterize those n-tuples {Po, P1 , , Pn-l} of algebraic polynomials
such that the degree ofpj isj,j = 0, 1, ,11 - 1, for which there exists a
function IE C([a, bD, the space of all continuous real valued functions
on [a, b], such that the polynomial of best approximation to f, in the
sense of Chebyshev, of degree j, is pj , for j = 0, 1, ... , n - 1.

Earlier, in 1957, Paszkowski [6] characterized two polynomials of successive
degrees, with the above property. Deutsch, Morris, and Singer [3] have
considered the above problem in a general normed linear space and have
characterized a sequence ofelements of linear subspaces for which there exists
an element having the sequence of elements as best approximations in the
corresponding subspaces. In particular, they have given a solution to Rivlin's
problem for constant and linear functions. Sprecher [8] has considered two
polynomials of arbitrary degrees and in [9] he has given a solution to the
above problem for the case n = 3. Subrahmanya [10] has generalized the
case 11 = 2 to a general Chebyshev system and in [11] has given a solution
to the above problem for a general n. Hegering [5] has considered the above
problem in normed linear spaces that include C(T). In all the above papers,
except that of Deutsch et al., only a finite number of elements are con
sidered.

In this paper we consider the above problem in C(T), T compact and
characterize an infinite set of elements for which there exists an element
IE C(T) with this set as best approximations from arbitrary subsets which
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we assume suns only in the necessity part. This is given in Theorem 2. Our
main result is given in Theorem 1 of this paper, from which we get a number
of other corollaries, including generalizations of a particular case of a theorem
of Brosowski [2], and a theorem of Subrahmanya [11].

Let T be a compact Hausdorff space and let C(T) denote the set of all
continuous real valued functions defined on T, normed by

n = sup IJ(t)l·
lET

Let 0 * VC C(T) and fE C(T). An element Vo E V is said to be a best
approximation to fin V, if

IJ - Vo II = inf Ilf - v II = Ev(j).
VEV

We denote by Pv(f), the set of all best approximation tofin V, i.e.,

PvC 1) = {v ~ V Ilif - v II = Ev(f)}·

V is said to be a sun if whenever Vo E Pv(f) for somefE qT) implies

for every ,\ ;:? 1.
A signature E on T is a continuous mapping of a closed subset of T into

{-l,l}. The set of all signatures on T is denoted by SIG[T]. A signature E

is said to be extremal for the element Vo (with respect to V C C(T» if for
every v E V we have

min E(t)(V(t) - vo(t» ::;;;; °
IEDOM«)

If fE C(T), we denote by M f the following set:

M f = {t E Til J(t)1 = Ilfll}·

For f * 0, there is a natural signature Ef defined by

Ef(t) • J(t) = IJ(t)1 = Ilfl'·

Then we have the following well-known result [1]:

LEMMA 1. Let V C C(T). Then V is a sun ifand only ifwhenever Vo E PV(f)'
f E C(T)\ V, implies Ef-v is extremal for Vo .

o

LEMMA 2. (a) The mapping (jj: C(T) X T -+ IR1 defined by (jj(f, t) = J(t)
is continuous.
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(b) For compact A C CCT) the functions

yet) := sup x(t) and z(t) := inf x(t)
XEA XEA

are continuous on T.
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Proof (a) Let fo E CCT), to' T and 10 > 0 be given. Then for every
(I, t) in the open set

{fE C(T)] ilf - fo II < E/2} X {t E T Ilfo(t) - fo(to) 1< E/2}

we have

11(t) -,!oCto) I :( 11(t) - .fo(t)1 + l.fo(t) - foCto) [ < 10

which shows that @ is continuous.

(b) Let (tv) be a net converging to 1. For each v there exists an Xv in
A such that xv(tv) = y(tv) and an x in A such x(t) = y(t). Since A is compact
we can assume that Xv converges to X in A. By part (a) and by the continuity
of x we can conclude from

the inequality
xU) = xU) :( y(t) = xU)

and hence the continuity of y. By the same method one can prove the con
tinuity of z.

Let K be a compact Hausdorff space and let v: K -+ CCT) and e: K -+ ~+

be continuous mappings. Then we define the continuous mapping

8E{-1,1}

by V6(K) := VK
6 := VK + SeK ;= V(K) + SeCK).

We then set

and

2. THE MAIN RESULT

THEOREM 1. Let K be a compact Hausdorff space and let v: K -+ CCT)
and e: K -+ ~+ be continuous mappings and let V: K -+ POT (C(T)) be such
that, for all Kin K, we have VK E VK • Then in order that there exists afunction
fE CCT) such that VK E PI' (j) and eK = Ilf - VK II it is sufficient and if for
every K E K, VK is a sun th"en it is also necessary that there exists a mapping
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E: K --+ SIG(T) such that EK is extremal for vK(w.r.t. VK) with the following
properties:

(i) For every t E T we have V-let) c:::; VH(t).

(ii) For every K E K we have

'K(t)
t E DOM(EK ) =;> V'K(t)(t) - v" (t) = O.

(iii) For every pair K, Ik E K we have

t E DOM(EK ) n DOM(E,,) =;> V'K(t)(t) - 1).,,(o(t) = O.

(iv) The set K8:= {K E K I E;;l(O) #- 0} is closed and the mapping
M8: K8 --+ 2T defined by K f-->- Cl(O) is upper semicontinuous where

OE{-1,+I}.

Proof. Necessity of the conditions. For.f E C(T) with the properties of
the theorem define a mapping E: K --+ SIG(T) by Ef-v for each K E K. Since
each VK is a sun the signature EK is extremal for VK ~ Since by assumption
V K E P v) 1) and eK = II! - V K II we conclude from

-eK c:::; J(t) - vAt) c:::; e"

for each t E T and each K E K that

which implies condition (i). Every t E DOM (EK ) satisfies

U sing the last inequality we conclude

which proves (ii).
Every t E DOM (€J n DOM(E,,) satisfies the equations

J(t) = vK(t) + Eit) eK= V<K{t) (t),

J(t) = vJt) + E,,(t) e" = V,,,(o(t)

which imply condition (iii).
For 8 E { -1, 1} define the set

and K E K}
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which is contained in the compact set IM(v), the image of v. Choose a net
(vK ) in A6 converging to Vk in IM(v).

n 0

If VK = J, then VKE Al () A-I. If VK =1= f then choose a subnet (vK) of (vK)
o 0 A 11

and a net (tA) in T converging to to in T and j(tA) - VKPA) = S II x - VKA II.
By Lemma 2, we have

By the continuity of the norm we conclude that

Hence, VK E A6, which shows that A6 is closed. By the continuity of v the set
o

K6 is closed. Since the mapping K ~f - V K , K E K, is continuous it suffices to
prove that the mapping g ~ E;I(S), g E q T), is upper semicontinuous. If
not there exist nets (gA) in qT) and tA) in T converging to go E qT) and
resp. to to in T and an open set Uocontaining E;:(S) such that tAE E;:(S) and
Uo () {tAl = 0. The last condition implies to ¢ E;oI(S). By Lemma 2 we have
gA(tA) ~ goCto)· Since S II gA II = gA(tA) we have by the continuity of the norm
S II go II = gQ(to) and hence to E E;o\S), which is a contradiction. This proves
condition (iv) and completes the proof of the necessity.

Sufficiency of the conditions. Since the mappings v and e are continuous
the mapping v6 : K ~ C(T) is also continuous, S E {-I, I}. By Lemma 2,
V_I and VI are continuous functions on T.

By condition (iv) the set K6, S E{-I, I}, is closed and by compactness of
K also compact. Since the mapping M6 is upper semicontinuous by a theorem
of Hahn [4] the set

N6:= U M6(K),
KEK

is compact. Now define a function

DE{-I,+l}

by get) := vit) for t E N6. Then g is well-defined by condition (iii) and it is
continuous by the continuity of VI , V-I' By Tietze's theorem there exists a
functionfE qT) such thatj(t) = get) for t ENIl UN-I.

We can assume that v_1(t) :( jet) :( v1(t) for all t E T. For, if not consider
the function

J-( ) '= IV6(t)
t. jet)

for
for

t E {t E T I D(V6(t) - j(t» :( O}
t E {t E T I v-1(t) :( J(t) :( v1(t)}
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which is well-defined by condition (iii) and continuous (cf. [2, p. 38]). Further
it follows that J(t) = get) for t E NI U N-l, v-I(t) ~ J(t) ~ vIet) for all
t E T. Consequently, we have

-eK~ f(t) - vK(t) ~ eK

for all t E T, which implies I!f - vii ~ eK • Also if t E DOM(EK ) then we have,
from condition (ii),

and

Consequently, f(t) = VE (t)(t) = V;K(tl(t). That is
K

which shows that DOM(EK ) C DOM(Ef_v ) and EK(t) = Ef-v (t) for each tin
DOM (EK). Since EK is extremal we ca~ conclude that v: E Pv(j). This
completes the proof of the sufficiency of the conditions. K

3. SOME COROLLARIES

THEOREM 2. Let K be a compact Hausdorff-space and let v: K -+ C(T) be
a continuous mapping. Let V: K -+ POT(C(T» be such that VKE VK for each
K E K. Then in order that there exists anfE C(T) with VK E P v (1) it is sufficient
and if for each K E K, VK is a sun then it is also necessary that there exist a
continuous mapping e: K -+ [R+ and a mapping E: K -+ SIG(T) such that EK

is extremal for VK with the following properties

(i) e" -:- eK ;?: II v" - v" :1 for each pair K, f1' E K

(ii) minteDOM«) Ejt)(U,,(t) - ujt» ;?: eK - e" for each pair K, f1' E K

(iii) as in Theorem 1

(iv) as in Theorem 1.

Proof Necessity of the conditions. Define a continuous mapping
e: K -+IR+ by e

K
=, Ilf - V K II, K E K. By Theorem I there exists a mapping

1': K -+ SIG(T) with properties (i)-(iv) of Theorem 1. Condition (i) of the
Theorem 2 is an immediate consequence of the triangle inequality. By (ii)
of Theorem 1 we have for each t E DOM(E K )

from which we conclude
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for each I-t E K, or

which proves (ii).

Sufficiency of the conditions. Condition (i) of Theorem 2 implies

V,,(t) - vK(t) ~ eK + e"

or v,,(t) - e" ~ vK(t) + e"
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for every t E T and every pair K, I-t E K, from which we conclude V_let) ~ Vl(t)
for each t E T.

Condition (ii) implies

Eit)(vjt) + EK(t) e,,) ;? EK(t)(VK(t) + Eit) eK)
E (I)

= EK(t) l'KK (t)

for each t E DOM(EK) and each I-t E K.
Consequently

which implies condition (ii) of Theorem 1. Now by Theorem 1 we can con
clude the existence of the function!

COROLLARY 1. Let VI C V2 C··· C Vn be a sequence of Haar-subspaces
of C[a, b] with dy := dim Vy , v = 1,2,... , n, and let VI' V2 , ... , Vn elements
in C[a, b] such that Vy E V y , V = 1, 2, ... , n.

If there exists points

real numbers
el > e2 > ... > en ;? 0,

and 7]1,7]2"",7]nE{-1, +1}

such that for all v, I-t with v =1= I-t we have

then there exists an f E C[a, b] such that

V y E Pv/f),

v = 1, 2,..., n.
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Proof There exist real number 0V,K such that the points

are different and are contained in [a, b], and that we still have

Now define with A: = max",K II v" - VK II real numbers ev : = e. + A, v = I,
2, ... , n. Then we have e" + e. ~ II v" - Vv II for all /L, v. Since each Vv is a
Haar-subspace of dimension dv the mapping

defined by

is an extremal signature for Vv (compare Brosowski [2]).
Now El, E2 , ... , En, e1 , e2 , ... , en, and VI' V 2 , ... , Vn satisfy conditions (i)

and (ii) of Theorem 2. Condition (iii) is fullfilled since the points tVoK are
different and condition (iv) is fulfilled since K is finite. Consequently, by
Theorem 2 there exists an fin C[a, b] with Vv E P v (f), v = 1, 2, ... , n.. v

COROLLARY 2. Let VI C V2 C ... C Vn be a sequence of Haar-subspaces
of C[a, b] with dv : = dim Vv , v = 1, 2, ... , n and let VI' V2 , ... , V n elements
in C[a, b] such that Vv E Vv , v = 1,2,... , n.

If there exist anfin C[a, b] such that v. E pvJf), v = 1,2,... , n, then there
exist points

v = 1,2,... , nand 'r)1, 'r)2 , ... , 'r)n E {-I, +1} such thatfor all n ~ /L > v ~ 1
either

K = 0, 1, ... , dv , or v" = Vv '

Proof We have

EV1(f) ~ Ev.Cf) ~ ... ~ Ev,,(f)

If E v (f) = E v (f) then by the Haar-condition Vv = V". If E v (f) > E v (f)
1/ J.L II J.L

then we consider the extremal signature Ef-v . For all t E DOM(Ef_v ) we
can conclude from condition (ii) of Theorem { that v
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By the alternation theorem there exists a number 77. E { -1, + I} and points

such that

K = 0, 1, ... , d., where the points t•. K can be chosen independently of /1-.

COROLLARY 3. Let VI h; V 2 be Haar-subspaces of era, b], VI E VI' and
V2 E V2 •

In order that there exists an element fin qa, b] such that VI E Pdf),
i = 1, 2, it is necessary and sufficient that VI - V2 has d1 : = dim VI zer~s in
the open interval (a, b) or is identically zero.

Proof If there exists an f with this properties then by Corollary 2 there
exist points

and 771 E {-I, +I} such that either

K = 0, 1,2,... , d1 , or V2 = VI' From this we conclude that V2 - VI has either
d1 zeros in (a, b) or is identically zero.

If there exist VI , V2 satisfying the condition of the corollary, then we can
omit the case VI = V2 because it is trivial. If VI =1= V2 then let

be the zeros of VI - V2 , put TO : = a, and T d
1

+1 : = b. Then choose an

and for v = 0, 1, ... , d1 points tl,. in the open interval (T., T.+1) such that

K = 0, 1,... , d1 • Since V2 - VI has at least one zero in (a, b) we can choose
points

a ~ t2 •0 < t2,1 < ... < t2-d. ~ b
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such that I V 2(t2,K) - V I(t2,K) I < ex/2 for K = 0, I, ... , d2 • With the real numbers
el : = exl , e2 : = ex/2, and T)2 = 1 we have

K = 0, 1, ... , dl , and

K = 0, 1, ... , d2 •

By Corollary 1 there exists anfsuch that Vi E Pv;C f), i = 1, 2.

COROLLARY 4. Let K be a compact set and v: K ---;. CCT) be a constant
mapping, say VK = v for all K E K, and let V: K ---;. POT(C(T» be such that
v E VKfor all K E K. Then in order that there exists an f E CCT)\ VK with
v E P v (f) for all K E K, it is sufficient and if VK is a sun for each
K E K, Kit is ~lso necessary that there exists a signature E which is extremal for v
with respect to VKfor each K E K.

COROLLARY 5. Let K, v and V be as in theorem 1. Then in order that there
exists anf E C(T) with VKE PVK(f) and Ilf - VKII is constant, it is sufficient and
if VK is a sun for every K E K it is also necessary that the conditions of the
theorem are satisfied with

and C+I := max vK •
KEK

COROLLARY 6. Let VK1 , VK2 ,... , VKn be subsets of C(T), VK, E VK" i = 1,
2, ... , n and ex. ~ 0, i = 1,2, ... , n, be given. In order that there exists anfE CCT)
such that VK'E PVK.(f) with Ilf - vK.II = eK it is sufficient and if each VI('
i = 1, 2, ... , 'n, is ~ sun, it is also n;cessary'that the following conditions a;e
satisfied:

(i) VI(t) ~ V-let) for each t E T.

(ii) For each i, there exists an extremal signature EKJor VK. such that if
t E DOM(E

K
), then ' ,

(iii) If t E DOM(EK) n DOM(EK,), then

VEK(t)(t) - VEK(t)(t) = O., )

Remark. Corollary 6 generalizes a result of Subrahmanya [11].
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COROLLARY 7. Let K be a compact set, v: K ---+ C(T) be a continuous
mapping and V C C(T) be such that VKE V for all K E K. Then in order that
there exists an fE C(T) such that VKE Pv(j) for all K E K, it is sufficient and
if V is a sun it is also necessary that there exists an extremal signature E for
some VK (and hence for all K E K) satisfying the following condition:

o

vK(t) - vKO(t) = 0 for all t E DOM(E) and all K E K.

Proof If there exists anfE C(T) with VKE P v (j) for al K E K, then setting
Ilf - VK II = e, we have the conditions the The"orem 1 with

V: K ---+ POT(C(T))

and e: K ---+ IR+ now constant mappings. Now by "the intersection theorem"
(see [2, Satz 3.7]) we have

is extremal for VK for all K E K. If t E DOM(E) then from condition (ii) of
Theorem 1 it follows that

and

v (t) - vdtl(t) = 0dt) K

and hence it follows that vit) - vKO(t) = 0 for all t E DOM(E) and for all
K E K, which proves that the condition is necessary. On the other hand let E
be extremal for VK and vit) - VK(t) = 0 for all t E DOM(E) and all K E K.

o 0

Choose an e such that

2e ~ II max VK - min L\ Ii
KEK KEK

Then conditions (i) and (ii) of Theorem 1 are immediately satisfied by noting
that Eis extremal for V K for all K E K, follows from the given condition. Also
conditions (iii) and (iv) do not contribute and hence the proof is completed.

Remark. The necessity part of Corollary 7 is a generalization of a result
(see [2, Satz 3.7]) of Brosowski.

COROLLARY 8. Let K = {I, 2}, v and V be as in Theorem 1 be such that
Vi and V2 are suns and Vi C V2 • Then ifthere exists anfE C(T) with Vi E Pv(j)
then there exists an extremal signature € for Vi satisfying the following ~on
dition:

For all t E DOM(€) we have either €(t)(v2(t) - viet)) > 0 or

v2(t) - Viet) = o.
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Proof If E v (f) = Ev (f) then from Corollary 7, there exists an extremal
1 •

signature Efor VI with respect to V2 and hence with respect to VI such that
for all t E DOM(E) we have

On the other hand if Ev (f) > Ev (f), then since VI is a sun Ef-v is extremal
1. 1

for VI (w.r.t. VI) and from condition (ii) of the theorem, if t E DOM(Et_v) and
1

Et-v (t) > 0, we have
1

VI(t) + Ev/f) ~ v2(t) + Ev.(f)

and hence Ef-v (t)(V2(t) - DI(t» ;? E v (f) - E v (f) > 0, and if Ef-v (t) < 0,
1 1 2 1

then, again from condition (ii) of Theorem 1, we have

VI(t) - EV1(f) ;? v2(t) - E V2(f)

and hence Et-v (t)(v2(t) - VI(t» ;? Ev (f) - Ev (f) > 0. Which shows that
1 1.

for all t E DOM(Ef_v), we have
1

and hence completes the proof.

Remark. Corollary 8 generalizes the necessity part of a result of
Paszkowski [6] for the case of two polynomials of consecutive degrees (see
also [8, 3, 10)). In all the abovecited papers, the condition was also sufficient.
It seems that the condition of Corollary 8 is not sufficient, but we are unable
to construct a counterexample.
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